Doubt by Muskan
Solution :
Let the natural number be x.
ATQ
x2 - 84 = 3 ( 8 + x)
x2 - 84 = 24 + 3x
x2 - 84 - 24 - 3x = 0
x2 - 108 - 3x = 0
x2 - 3x - 108 = 0
x2 - (12 - 9)x - 108 = 0
x2 - 12x + 9x - 108 = 0
x(x - 12) + 9(x - 12) = 0
(x + 9)(x - 12) = 0
x + 9 = 0 OR x - 12 = 0
x = - 9 OR x = 12
x ≠ -9 [∵ x is a natural number]
∴ x = 12
Hence, required natural number is 12.