Pages

Solve (5+2√6)^(x^2-3) + (5-2√6)^(x^2 - 3) = 10 by using quadratic formula.

Problem : Solve (5+2√6)(x2-3) + (5-2√6)(x2-3) = 10 by using quadratic formula.


Doubt by Muskan 

Solution :  
(5+2√6)(x2-3) + (5-2√6)(x2-3) = 10 ---------(1)

Let y = 
(5 + 2√6)(x2 - 3) 

then 1/y = 1/[(5 + 2√6)(x2 - 3) ]

1/y = [1/(5+2√6)](x2 - 3) 

[On Rationalising the denominator]

1/y = (5 + 2√6)(x2 - 3)  

On putting these values of y and 1/y in equation in eq (1)

y + 1/y = 10
(y2 + 1)/y = 10
(y2 + 1) = 10y
y2 - 10y + 1 = 0

a = 1
b = -10
c = 1

D = b2 - 4ac
D = (-10)2 - 4(1)(1)
D = 100 - 4
D = 96 

Using Quadratic Formula

y = (- b ± √D) / 2a
y = [-(10) ± √96] / 2(1)
y = (10 ± 4√6) / 2 
y =  2(5 ± 2√6) / 2
y = 5 ± 2√6 

When y = 5  + 2√6

(5 + 2√6)(x2-3) = (5 + 2√6)1
Equating the Power Both Sides
x2 - 3 = 1
x2 = 1 + 3
x2 = 4 
x = ± √4
x = 
± 2

When y = 5  - 2√6
(5 + 2√6)(x2-3) = 5 - 2√6
(5 + 2√6)(x2-3) = [1/(5 - 2√6)]-1
(5 + 2√6)(x2-3) = (5 + 3√6)-1
[Rationalising the denominator]
Equating the Power Both Sides
x2 - 3 = -1
x2 = -1+3|
x2 = 2
x = 
± √2

∴ x = ± 2, ±√2