Question : If the sum of first four terms of an AP is 40 and that of first 14 terms is 280. Find the sum of the first n terms.
Doubt by Saumya
Solution :
S4=40 (Given)
S14=280 (Given)
Sn=?
We know,
Sn=n/2[2a+(n-1)d]
Sn=n/2[2a+(n-1)d]
S4=40
4/2[2a+(4-1)d]=40
4/2[2a+(4-1)d]=40
2[2a+3d]=40
2a+3d=40/2
2a+3d=20 — (1)
S14=280
14/2[2a+(14-1)d]=280
7[2a+13d]=280
2a+13d=280/7
2a+13d=40 — (2)
Solving equation (1) and (2)
Solving equation (1) and (2)
2a+ 3d=20
2a+13d=40
- - -
--------------------
0 -10d=-20
- - -
--------------------
0 -10d=-20
---------------------
-10d=-20
-10d=-20
d=-20/-10
d=2
Putting d=2 in equation (1)
2a+3(2)=20
2a+6=20
Putting d=2 in equation (1)
2a+3(2)=20
2a+6=20
2a=20-6
2a=14
a=14/2
a=7
Now,
Sn=n/2[2a+(n-1)d]
Sn=n/2[2(7)+(n-1)2]
Sn=n/2[14+2n-2]
Sn=n/2[12+2n]
Sn=(n/2)×2[6+n]
Sn=n(n+6)
Sn=n/2[2a+(n-1)d]
Sn=n/2[2(7)+(n-1)2]
Sn=n/2[14+2n-2]
Sn=n/2[12+2n]
Sn=(n/2)×2[6+n]
Sn=n(n+6)