Pages

The mean of the following frequency table is 50. But the . . .

Question : The mean of the following frequency table is 50. But the frequencies f1 and f2 in class 20-40 and 60-80 respectively are missing. Find the missing frequencies.

Classes  0-20 20-40 40-60 60-80 80-100 Total
Frequency 17 f1 32 f2 19 120

Doubt by Pushkar

Solution : 

Classes (CI) Frequency (fi) xi di=xi-a fidi
0-20 17 10 -40 -680
20-40 f1
30 -20 -20f1
40-60 32 50 = a 0 0
60-80 f2
70 20 20f2
80-100 19 90 40 760

Σfi =120=f1+f2+68


Σfidi=-20f1+20f2+80

Now, 

f1+f2+68 = 120
f1+f2 = 52 — (1)

x̄=50 (Given)

By Assumed Mean Method

x̄ = a+[Σfidi/Σfi]
50 = 50 + (-20f1+20f2+80)/ 120
50-50 = (-20f1+20f2+80)/ 120 
0 ×120 = -20f1+20f2+80 
0 = 20(-f1+f2+4)
0/20 = -f1+f2+4 
0 = -f1+f2+4
f1-f2 = 4 — (2)

Solving equations (1) and (2)
f1+f2 = 52 
f1-f2 = 4 
--------------
2f1+0=56
--------------
f1 = 56/2
f= 28
Putting the value of f1 in equation (1)

28+f2 = 52
f2 = 52 - 28
f2 = 24

Hence, f1= 28 & f2=24