Question : The mean of the following frequency table is 50. But the frequencies f1 and f2 in class 20-40 and 60-80 respectively are missing. Find the missing frequencies.
Classes | 0-20 | 20-40 | 40-60 | 60-80 | 80-100 | Total |
Frequency | 17 | f1 | 32 | f2 | 19 | 120 |
Doubt by Pushkar
Solution :
Classes (CI) | Frequency (fi) | xi | di=xi-a | fidi |
0-20 | 17 | 10 | -40 | -680 |
20-40 | f1 |
30 | -20 | -20f1 |
40-60 | 32 | 50 = a | 0 | 0 |
60-80 | f2 |
70 | 20 | 20f2 |
80-100 | 19 | 90 | 40 | 760 |
Σfi =120=f1+f2+68 |
Σfidi=-20f1+20f2+80 |
Now,
f1+f2+68 = 120
f1+f2 = 52 — (1)
x̄=50 (Given)
By Assumed Mean Method
x̄ = a+[Σfidi/Σfi]
50 = 50 + (-20f1+20f2+80)/ 120
50-50 = (-20f1+20f2+80)/ 120
0 ×120 = -20f1+20f2+80
0 = 20(-f1+f2+4)
0/20 = -f1+f2+4
0 = -f1+f2+4
f1-f2 = 4 — (2)
Solving equations (1) and (2)
f1+f2 = 52
f1-f2 = 4
--------------
2f1+0=56
--------------
f1 = 56/2
f1 = 28
Putting the value of f1 in equation (1)
28+f2 = 52
f2 = 52 - 28
f2 = 24
Hence, f1= 28 & f2=24