Question : If x=rsinAcosC, y=rsinAsinC and z=rcosA, prove that r2=x2+y2+z2.
Doubt by Jaskirat
Solution :
x=rsinAcosC
y=rsinAsinC
z=rcosA
r2=x2+y2+z2
RHS
RHS
x2+y2+z2
=(rsinAcosC)2+(rsinAsinC)2+(rcosA)2
=r2sin2Acos2C+r2sin2Asin2C+r2cos2A
=r2sin2Acos2C+r2sin2Asin2C+r2cos2A
=r2[sin2Acos2C+sin2Asin2C+cos2A]
=r2[sin2A(cos2C+sin2C)+cos2A]
=r2[sin2A(1)+cos2A] (∵sin2θ+cos2θ=1)
=r2[sin2A(cos2C+sin2C)+cos2A]
=r2[sin2A(1)+cos2A] (∵sin2θ+cos2θ=1)
=r2[sin2A+cos2A]
=r2[1] (∵sin2θ+cos2θ=1)
=r2[1] (∵sin2θ+cos2θ=1)
=r2
=LHS
LHS=RHS
Hence Proved.