Pages

If x=rsinAcosC, y=rsinAsinC and z=rcosA, prove . . .

Question : If x=rsinAcosC, y=rsinAsinC and z=rcosA, prove that r2=x2+y2+z2.

Doubt by Jaskirat

Solution : 
x=rsinAcosC 
y=rsinAsinC
z=rcosA

r2=x2+y2+z2

RHS
x2+y2+z2
=(rsinAcosC)2+(rsinAsinC)2+(rcosA)2
=r2sin2Acos2C+r2sin2Asin2C+r2cos2A
=r2[sin2Acos2C+sin2Asin2C+cos2A]
=r2[sin2A(cos2C+sin2C)+cos2A]
=r2[sin2A(1)+cos2A] (∵sin2
θ+cos2θ=1)
=r2[sin2A+cos2A]
=r2[1] 
(∵sin2θ+cos2θ=1)
=r2
=LHS

LHS=RHS
Hence Proved.