Doubt by Charu
Solution :
ax²+bx+c=0
α=sinθ (Given)
ax²+bx+c=0
α=sinθ (Given)
β=cosθ (Given)
Sum of Zeroes
α+β = -b/a
sinθ+cosθ = -b/a — (1)
sinθ+cosθ = -b/a — (1)
Product of Zeroes
αβ = c/a
sinθ.cosθ = c/a — (2)
αβ = c/a
sinθ.cosθ = c/a — (2)
We know,
α²+β² = (α+β)²-2αβ
sin²θ + cos²θ = (sinθ+cosθ)²-2sinθ.cosθ
1 = (-b/a)²-2(c/a)
[sin²θ+cos²θ=1] [From eq (1) and (2)]
1 = (-b/a)²-2(c/a)
[sin²θ+cos²θ=1] [From eq (1) and (2)]
1=b²/a² - 2c/a
1=(b²-2ac)/a²
a²=b²-2ac
a²-b²+2ac=0
1=(b²-2ac)/a²
a²=b²-2ac
a²-b²+2ac=0
Hence Proved.