Pages

250 apples of a box were weighed and the distribution . . .

Question : 250 apples of a box were weighed and the distribution of masses of the apples is given in the following table : 

Mass (in grams)
80-100 100-120 120-140 140-160 160-180
Number of apples
20 60 70 x 60

i) Find the value of x and the mean mass of the apples. [3 Marks]
ii) Find the modal mass of the apples. [2 Marks]

CBSE 2023

Solution : 

i) Total apples = 250
20+60+70+x+60=250
210+x=250
x=250-210
x=40

Mass (C.I.) No. of Apples (fi) Class Marks (xi) di=xi-a ui=di/a fiui
80-100 20 90 -40 -2 -40
100-120 60 110 -20 -1 -60
120-140 70 130 = a  0 0 0
140-160 40 150 20 1 40
160-180 60 170 40 2 120

Σfi=250



Σfiui=60

Using Step Deviation Method
Mean (x̄) 
= a+(Σfiui/Σfi)×h
= 130+(60/250)×20
=130+(1200/250)
=130+4.8
=134.8 grams

Hence, the mean mass of the apple is 134.8 grams

ii) Modal Mass

Mass (C.I.) No. of Apples (fi)
80-100 20
100-120 60 - f0
120-140 70 - f1
140-160 40 - f2
160-180 60

Σfi=250

Here
Maximum Frequency = 70
Modal Class = 120-140
Lower Limit of the model class (l) = 120
Class size (h) = 140-120
=20
f0=60
f1=70
f2=40

Mode = l+[(f1-f0)/2f1-f0-f2)]×h
= 120+[(70-60)/(140-60-40)]×20
= 120+[10/(140-100)]×20
= 120+[10/40]×20
= 120+10/2
= 120+5
= 125 grams

Hence, the modal mass of the apple is 125 grams.