Question : Prove that 2(sin6θ+cos6θ)-3(sin4θ +cos4θ)+1=0
Doubt by Muskan
Solution :
2(sin6θ+cos6θ)-3(sin4θ +cos4θ)+1=0
LHS
=2(sin6θ+cos6θ)-3(sin4θ +cos4θ)+1
=2[(sin2θ)3+(cos2θ)3] - 3(sin4θ +cos4θ)+1
=2[(sin2θ+cos2θ)(sin4θ+cos4θ-sin2θcos2θ)]-3(sin4θ +cos4θ)+1
[∵ (a3+b3)=(a+b)(a2+b2-ab)]
=2[(1)(sin4θ+cos4θ-sin2θcos2θ)]-3(sin4θ +cos4θ)+1
[∵ sin2θ+cos2θ = 1]
=2sin4θ+2cos4θ-2sin2θcos2θ-3sin4θ-3cos4θ+1
=-sin4θ-cos4θ-2sin2θcos2θ+1
=-(sin4θ+cos4θ+2sin2θcos2θ)+1
=-(sin2θ+cos2θ)2+1
[∵ sin2θ+cos2θ = 1]
=-(1)2+1
=-1+1
=0
= RHS
∴ LHS = RHS
Hence Proved.