Pages

If the polynomial 36x4+48x3+27x2+21x+7 is divided by another polynomial . . .

Question : If the polynomial 36x4+48x3+27x2+21x+7 is divided by another polynomial 3x2+4x+1, the remainder comes out to be (2a+1)x-20b, find the value of a and b.


Doubt by Gauri

Solution : 

p(x) = 36x4+48x3+27x2+21x+7
g(x) = 3x2+4x+1
r(x)  = (2a+1)x-20b

Dividing p(x) by g(x) by long division method.
                ____________________
3x2+4x+1)36x4+48x3+27x2+21x+7(12x2+5
                 36x4+48x3+12x2
                 -       -         -               
------------------------------------------------
                                     15x2+21x+7
                                     15x2+20x+5
                                     -       -       - 
------------------------------------------------
                                                 x+2
------------------------------------------------
 
r(x) = x+2
But r(x) = (2a+1)x-20b
Equating both of them
x+2=(2a+1)x-20b
equating the coefficient of x both sides
1=(2a+1)
1-1=2a
0=2a
a=0

equating the constant term both sides
2=-20b
2/(-20)=b
-1/10 = b
b = -1/10