Question : If one of the zeroes of the cubic polynomial x3 + px2 + qx + r is -1, then the product of the other two zeroes is
a) p+q+1
b) p-q-1
c) q-p+1
d) q-p-1
Doubt by Zoha
Solution :
α = -1 (Given)
x3 + px2 + qx + r
x3 + px2 + qx + r
Here
a=1
b=p
c=q
d=r
α+β+γ=-b/a
α+β+(-1)=-p/1
α+β = -p+1 — (1)
Also,
αβ+βγ+γα=c/a
αβ+β(-1)+(-1)α=q/1
αβ-(β+α)=q
αβ-(α+β)=q
αβ-(-p+1)=q [Using equation (1)]
αβ+p-1=q
αβ = q-p+1
α+β+(-1)=-p/1
α+β = -p+1 — (1)
Also,
αβ+βγ+γα=c/a
αβ+β(-1)+(-1)α=q/1
αβ-(β+α)=q
αβ-(α+β)=q
αβ-(-p+1)=q [Using equation (1)]
αβ+p-1=q
αβ = q-p+1
Hence, c) q-p+1, is the correct option.