Pages

Three vertices of a parallelogram are (a+b, a-b) . . .

Question : Three vertices of a parallelogram are (a+b, a-b), (2a+b, 2a-b), (a-b, a+b). Find the fourth vertex?


Doubt by Vanshika

Solution :

Let
A (a+b, a-b)
B (2a+b, 2a-b)
C (a-b, a+b)
D (x4, y4)

We know diagonals of parallelogram bisect each other. So
Mid Point of AC = Mid Point of BD
[(x1+x3)/2 , (y1+y3)/2] = [(x2+x4)/2 , (y2+y4)/2]
[(a+b+a-b)/2 , (a-b+a+b)/2] = [(2a+b+x4)/2 , (2a-b+y4)/2]
[(2a)/2 , (2a)/2] = [(2a+b+x4)/2 , (2a-b+y4)/2]

Equating the x and y coordinates both sides.

2a/2 = (2a+b+x4)/2
2a=2a+b+x4
2a-2a-b=x4
x4=-b

2a/2=(2a-b+y4)/2
2a=2a-b+y4
2a-2a+b=y4
y4=b

Hence, the coordinates of fourth vertex of the parallelogram will be (x4,y4) = (-b,b).