Question : If 1+sin2α=3sinαcosα, then values of cotα are
a) -1,1
b) 0,1
c) 1,2
d) -1,-1
Doubt by Zoha
Solution :
1+sin2α=3sinαcosα
(sin2α+cos2α)+sin2α=3sinαcosα
[∵sin2θ+cos2θ=1]
2sin2α+cos2α=3sinαcosα
2sin2α+cos2α-3sinαcosα=0
2sin2α-3sinαcosα+cos2α=0
By Splitting the Middle Term
2sin2α+cos2α=3sinαcosα
2sin2α+cos2α-3sinαcosα=0
2sin2α-3sinαcosα+cos2α=0
By Splitting the Middle Term
2sin2α-(2sinαcosα+1sinαcosα)+cos2α=0
2sin2α-2sinαcosα-1sinαcosα+cos2α=0
2sin2α-2sinαcosα-sinαcosα+cos2α=0
2sinα(sinα-cosα)-cosα(sinα-cosα)=0
(sinα-cosα)(2sinα-cosα)=0
(sinα-cosα) = 0 OR (2sinα-cosα)=0
sinα-cosα = 0
sinα = cosα
1=cosα/sinα
1=cotα
cotα = 1
sinα = cosα
1=cosα/sinα
1=cotα
cotα = 1
2sinα-cosα = 0
2sinα = cosα
2=cosα/sinα
2=cotα
cotα = 2
2sinα = cosα
2=cosα/sinα
2=cotα
cotα = 2
So, cotα = 1 or 2
Hence, c) would be the correct option.
Hence, c) would be the correct option.