Pages

If 1+sin2α=3sinαcosα, then value of cotα are . . .

Question : If 1+sin2α=3sinαcosα, then values of cotα are

a) -1,1
b) 0,1
c) 1,2
d) -1,-1

Doubt by Zoha

Solution : 

1+sin2α=3sinαcosα
(sin2α+cos2α)+sin2α=3sinαcosα
[sin2θ+cos2θ=1]
2sin2α+cos2α=3sinαcosα
2sin2α+cos2α-3sinαcosα=0
2sin2α-3sinαcosα+cos2α=0

By Splitting the Middle Term

2sin2
α-(2sinαcosα+1sinαcosα)+cos2α=0
2sin2α-2sinαcosα-1sinαcosα+cos2α=0
2sin2α-2sinαcosα-sinαcosα+cos2α=0
2sinα(sinα-cos
α)-cosα(sinα-cosα)=0
(sinα-cosα)(2sinα-cosα)=0

(sinα-cosα) = 0 OR (2sinα-cosα)=0

sinα-cosα = 0
sin
α = cosα
1=cosα/sinα
1=cotα
cotα = 1

2sinα-cosα = 0
2sinα = cosα
2=cosα/sinα
2=cotα
cotα = 2

So, cotα = 1 or 2

Hence, c) would be the correct option.