Pages

In Δ ABC, it is given that AB/AC = BD/DC. If . . .

Question : In Δ ABC, it is given that AB/AC = BD/DC. If ∠B=70° and ∠C=50°, then ∠BAD is
a) 30
°
b) 40
°
c) 45°
d) 50°

Doubt by Saumya

Solution : 
∠B=70° (Given)
∠C=50° (Given)

AB/AC = BD/DC (Given)
∠BAD = ∠CAD
(Converse of Internal Angle Bisector Theorem)

Let 
∠BAD = ∠CAD = x
Now, In ΔBAC
∠ABC + ∠BCA + ∠BAC = 180°
(Angle Sum Property)
∠ABC + ∠BCA + ∠BAC = 180°
70°+50°+x+x = 180°
120
°+2x = 180°
2x = 180
°-120°
2x = 60
°
x = 60
°/2
x = 30
°
∠BAD = 30°

Hence, a) would be the correct option.