Pages

In figure, AE is the bisector of exterior ∠CAD, meeting . . .

Question : In figure, AE is the bisector of exterior ∠CAD, meeting BC produced in E. If AB = 10 cm, AC = 6 cm, and BC = 12 cm, then CE equal to 
a) 5 cm 
b) 15 cm 
c) 18 cm 
d) 28 cm 



Doubt by Saumya 


Solution : 
AE is the bisector of exterior ∠CAD
i.e. ∠DAE = ∠CAE (Given)
BE/CE=AB/AC (Exterior Angle Bisector Theorem) 

AB = 10 cm 
AC = 6 cm
BC = 12 cm
CE = ?

BE/CE=AB/AC
(BC+CE)/CE = AB/AC
(12+CE)/CE=10/6
(12+CE)/CE=5/3
36+3CE = 5CE
36 = 5CE-3CE
36 = 2CE
36/2 = CE
18 = CE
CE = 18 cm

Hence, c) would be the correct option.