Question : The angles of a triangle are in AP. The greatest angle is twice the least. Find all the angles of the triangle.
Doubt by Zoha
Solution :
Method I :
We know,
an=a+(n-1)d
an=a+(n-1)d
where
a =first term
d = common difference
Let the three angles of the triangle be
∠A = a1 = a
∠B = a2 = a+d
∠C = a3 = a+2d
∠A = a1 = a
∠B = a2 = a+d
∠C = a3 = a+2d
ATQ
∠A+∠B+∠C = 180°
(a)+(a+d)+(a+2d)=180°
a+a+d+a+2d=180°
(a)+(a+d)+(a+2d)=180°
a+a+d+a+2d=180°
3a+3d=180°
3(a+d)=180°
a+d=180°/3
a+d=60° — (1)
a+d=180°/3
a+d=60° — (1)
Case I
If a3>a1
a3=2(a1)
a+2d=2a
a-2a+2d=0
-a+2d=0 — (2)
If a3>a1
a3=2(a1)
a+2d=2a
a-2a+2d=0
-a+2d=0 — (2)
On solving equation (1) and (2)
a + d =60°
a + d =60°
-a+2d =0
----------------
0 +3d = 60°
d = 60°/3
0 +3d = 60°
d = 60°/3
d = 20°
Putting in equation (2)
-a+2(20°)=0
-a+2(20°)=0
-a+40°=0
a = 40°
Hence
∠A = a1 = a = 40°
∠B = a2 = a+d = 40°+20°=60°
∠C = a3 = a+2d = 40°+2(20°) = 40°+40° = 80°
∠B = a2 = a+d = 40°+20°=60°
∠C = a3 = a+2d = 40°+2(20°) = 40°+40° = 80°
Hence, the required angles of the triangle are 40°, 60° and 80°.
Case II
If a1>a3
a=2(a+2d)
a=2a+4d
a-2a-4d=0
-a-4d=0 — (3)
If a1>a3
a=2(a+2d)
a=2a+4d
a-2a-4d=0
-a-4d=0 — (3)
On solving equation (1) and (3)
a + d = 60°
a + d = 60°
-a-4d = 0
----------------
0 -3d = 60°
d = 60°/(-3)
0 -3d = 60°
d = 60°/(-3)
d = -20°
Putting in equation (3)
-a-4(-20°)=0
-a-4(-20°)=0
-a+80°=0
-a =-80°
a = 80°
a = 80°
Hence
∠A = a1 = a = 80°
∠B = a2 = a+d = 80°+(-20°)=60°
∠C = a3 = a+2d = 80°+2(-20°) = 80°-40° = 40°
∠B = a2 = a+d = 80°+(-20°)=60°
∠C = a3 = a+2d = 80°+2(-20°) = 80°-40° = 40°
Hence, the required angles of the triangle are 80°, 60° and 40°.
Hence the required angles of the triangle are 80°, 60° & 40° OR 40°, 60° & 80°
Method II : (Recommended)
Let the three angles of the triangle be
∠A = a-d
∠B = a
∠C = a+d
ATQ
∠A+∠B+∠C = 180°
(a-d)+a+(a+d)=180°
a-d+a+a+d=180°
∠A = a-d
∠B = a
∠C = a+d
ATQ
∠A+∠B+∠C = 180°
(a-d)+a+(a+d)=180°
a-d+a+a+d=180°
3a=180°
a=180°/3
a=60°
Also
∠C=2∠A
a+d=2(a-d)
a=60°
Also
∠C=2∠A
a+d=2(a-d)
a+d=2a-2d
d+2d=2a-a
3d=a
3d=60°
d=60°/3
d=60°/3
d=20°
∠A = a-d
= 60°-20°
= 60°-20°
= 40°
∠B = a
= 60°
= 60°
∠C = a+d
= 60°+20°
= 60°+20°
= 80°
Hence, the required angles of the triangle are 40°, 60° and 80°.