Pages

The angles of a triangle are in AP. The greatest angle is twice . . .

Question : The angles of a triangle are in AP. The greatest angle is twice the least. Find all the angles of the triangle. 


Doubt by Zoha

Solution : 

Method I :
We know, 
an=a+(n-1)d
where 
a =first term 
d = common difference

Let the three angles of the triangle be
∠A = a1 = a
∠B = a2 = a+d
∠C = a3 = a+2d

ATQ
∠A+∠B+∠C = 180°
(a)+(a+d)+(a+2d)=180
°
a+a+d+a+2d=180
°
3a+3d=180°
3(a+d)=180°
a+d=
180°/3
a+d=60
° — (1)


Case I 

If a3>a1
a3=2(a1)
a+2d=2a
a-2a+2d=0
-a+2d=0 — (2)

On solving equation (1) and (2)

 a + d  =60°
-a+2d  =0
----------------
0 +3d = 60
°
d = 60
°/3
d = 20°

Putting in equation (2)
-a+2(20
°)=0
-a+40°=0
a = 40°

Hence
∠A = a1 = a = 40°
∠B = a2 = a+d = 40°+20°=60°
∠C = a3 = a+2d = 40°+2(20°) = 40°+40° = 80°


Hence, the required angles of the triangle are 40°, 60° and 80°.

Case II

If a1>a3
a=2(a+2d)
a=2a+4d
a-2a-4d=0
-a-4d=0 — (3)

On solving equation (1) and (3)

 a + d  = 60°
-a-4d  = 0
----------------
0 -3d = 60
°
d = 60
°/(-3)
d = -20°

Putting in equation (3)
-a-4(-20
°)=0
-a+80°=0
-a =-80°
 a = 80
°

Hence
∠A = a1 = a = 80°
∠B = a2 = a+d = 80°+(-20°)=60°
∠C = a3 = a+2d = 80°+2(-20°) = 80°-40° = 40°


Hence, the required angles of the triangle are 80°, 60° and 40°.

Hence the required angles of the triangle are 80°, 60° & 40° OR 40°, 60° & 80°



Method II : (Recommended)

Let the three angles of the triangle be
∠A = a-d
∠B = a
∠C = a+d

ATQ
∠A+∠B+∠C = 180
°
(a-d)+a+(a+d)=180
°
a-d+a+a+d=180
°
3a=180°
a=180°/3
a=60
°

Also

∠C=2∠A
a+d=2(a-d)
a+d=2a-2d
d+2d=2a-a
3d=a
3d=60°
d=60
°/3
d=20°

∠A = a-d 
= 60
°-20°
= 40°

∠B = a
= 6
0°

∠C = a+d 
= 60
°+20°
= 80°

Hence, the required angles of the triangle are 40°, 60° and 80°.