Question : Find the sum of the following series : 5+(-41)+9+(-39)+13+(-37)+17+...+(-5)+81+(-3)
Doubt by Pushkar
Solution :
=5+(-41)+9+(-39)+13+(-37)+17+...+(-5)+81+(-3)
=[5+(-41)]+[9+(-39)]+[13+(-37)]+17+...+(-5)+[81+(-3)]
= (-36)+(-30)+(-24)+ . . .+(78)
Now
a1=-36
a2=-30
a3=-24
d1=a2-a1
= -30-(-36)
= -30+36
= 6
= -30-(-36)
= -30+36
= 6
d2=a3-a2
= -24-(-30)
= -24+30
= 6
= -24-(-30)
= -24+30
= 6
d1=d2
Hence, this is an AP
Now
a = -36
a = -36
d = 6
an = 78
an=a+(n-1)d
78=-36+(n-1)6
78=-36+(n-1)6
78+36=(n-1)6
114=(n-1)6
114=(n-1)6
114/6=(n-1)
19=n-1
19=n-1
19+1=n
20=n
n=20
Sn=(n/2)[a+an]
S20=(20/2)[-36+78]
S20=10[42]
S20=420
S20=(20/2)[-36+78]
S20=10[42]
S20=420
Hence, the sum of the entire series is 420.