Question : The mean of the following distribution is 62.8 and sum of all frequencies is 50. Find the missing frequencies f1 and f2
Class | 0-20 | 20-40 | 40-60 | 60-80 | 80-100 | 100-120 |
Frequency | 5 | f1 | 10 | f2 | 7 | 8 |
Doubt by Pushkar
Solution :
Class Intervals (CI) | Frequency (fi) | Class Marks (xi) | di=xi-a | fidi |
0-20 | 5 | 10 | -40 | -200 |
20-40 | f1 | 30 | -20 | -20f1 |
40-60 | 10 | 50=a | 0 | 0 |
60-80 | f2 | 70 | 20 | 20f2 |
80-100 | 7 | 90 | 40 | 280 |
100-120 | 8 | 110 | 60 | 480 |
Total | Σfi=50 |
Σfidi= -20f1+20f2+560 |
Σfi=50
30+f1+f2=50
f1+f2=50-30
f1+f2=20 — (1)
x̄=62.8 (Given)
Using Assumed Mean Method
x̄ = a+[Σfidi/Σfi]
62.8 = 50+[-20f1+20f2+560/50]
62.8-50 = [-20f1+20f2+560/50]
12.8 × 50 = -20f1+20f2+560
640-560 = -20f1+20f2
80 = 20[-f1+f2]
80/20 = -f1+f2
4 = -f1+f2
-f1+f2 = 4 — (1)
Adding equation (1) and (2)
f1+f2-f1+f2=20+4
2f2=24
f2 = 24/2
f2 = 12
putting in equation (1)
f1+12=20
f1=20-12
f1=8
Hence, f1=8 and f2 = 12