Question : Prove that sin4A-cos4A=sin2A-cos2A=2sin2A-1=1-2cos2A
Doubt by Jaskirat
Solution :
sin4A-cos4A
=(sin2A)2 - (cos2A)2
= (Sin2A+cos2A)(sin2A-cos2A)
[∵a2-b2=(a+b)(a-b)]
= (1)(sin2A-cos2A)
[∵sin2θ+cos2θ=1]
= sin2A-cos2A
= sin2A-(1-sin2A)
= sin2A-(1-sin2A)
[∵cos2θ = 1-sin2θ]
=sin2A-1+sin2A
=2sin2A-1
=sin2A-1+sin2A
=2sin2A-1
=2(1-cos2A)-1
[∵sin2θ = 1-cos2θ]
=2-2cos2A-1
=1-cos2A