Doubt by Nevaeh
Solution :
α²+β²=40 (Given)
f(x)=x²-8x+k
a = 1
b = -8
c = k
α+β=-b/a
α+β=-(-8)/1
α+β=8 — (1)
α+β=-(-8)/1
α+β=8 — (1)
αβ=c/a
αβ=k/1
αβ=k — (2)
αβ=k — (2)
α²+β²=40
(α+β)²-2αβ=40
(8)²-2(k)=40
64-2k=40
(α+β)²-2αβ=40
(8)²-2(k)=40
64-2k=40
64-40=2k
24=2k
24/2=k
k=12
24=2k
24/2=k
k=12
Hence, the required value of k is 12.
Similar Question : If sum of the squares of zeroes of the quadratic polynomial 6x2+x+k is 25/36, then the value of k is
a) 4
b) -4
c) 2
d) -2