Question : Divide 56 in four parts in AP such that the ratio of the product of their extremes to the product of means is 5:6.
Doubt by Vaishnavi
Solution :
Let the four parts which are in AP are
a1=a-3d
a2=a-d
a3=a+d
a4=a+3d
a1=a-3d
a2=a-d
a3=a+d
a4=a+3d
ATQ
a1+a2+a3+a4=56
a-3d+a-d+a+d+a+3d=56
4a=56
a=56/4
a=14 — (1)
(a1×a4):(a2×a3) = 5:6
(a1×a4)/(a2×a3) = 5/6
(a-3d)(a+3d)/(a-d)(a+d)=5/6
(a²-9d²)/(a²-d²)=5/6
(a²-9d²)/(a²-d²)=5/6
6(a²-9d²)/=5×(a²-d²)
6a²-54d²=5a²-5d²
6a²-5a²=54d²-5d²
a²=49d²
14²=49d² [From equation (1)]
196/49=d²
4=d²
d=±√4
(a²-9d²)/(a²-d²)=5/6
(a²-9d²)/(a²-d²)=5/6
6(a²-9d²)/=5×(a²-d²)
6a²-54d²=5a²-5d²
6a²-5a²=54d²-5d²
a²=49d²
14²=49d² [From equation (1)]
196/49=d²
4=d²
d=±√4
d=±2
When d=+2, a=14
a1=a-3d = 14-3(2) = 14-6 = 8
a2=a-d = 14-2 = 12
a3=a+d = 14+2 = 16
a4=a+3d = 14+3(2) = 14+6 = 20
a3=a+d = 14+2 = 16
a4=a+3d = 14+3(2) = 14+6 = 20
When d=-2, a=14
a1=a-3d = 14-3(-2) = 14+6 = 20
a2=a-d = 14-(-2) = 14+2 = 16
a3=a+d = 14+(-2) = 14-2 = 12
a4=a+3d = 14+3(-2) = 14-6 = 8
a3=a+d = 14+(-2) = 14-2 = 12
a4=a+3d = 14+3(-2) = 14-6 = 8
Hence, the required four parts are 8,12,16,20 or 20,16,12,8