Question : If the last term of an AP of 30 terms is 119 and the 8th term from the end (towards the first term) is 91, then find the common difference of the AP. Hence, find the sum of all the terms of the AP.
Doubt by CBSE
Solution :
n=30
l=a30=119
Now,
8th term from the end of the AP
a8=91
l-(8-1)d=91 [∵an=l-(n-1)d]
119-7d=91
119-91=7d
28=7d
d=28/7
d=4
8th term from the end of the AP
a8=91
l-(8-1)d=91 [∵an=l-(n-1)d]
119-7d=91
119-91=7d
28=7d
d=28/7
d=4
Also,
an=a+(n-1)d
119=a+(30-1)(4)
119=a+29(4)
119=a+116
119-116=a
3=a
a=3
an=a+(n-1)d
119=a+(30-1)(4)
119=a+29(4)
119=a+116
119-116=a
3=a
a=3
Now,
Sn=(n/2)[a+an]
S30=(30/2)[3+119]
S30=15[122]
S30=1830
Sn=(n/2)[a+an]
S30=(30/2)[3+119]
S30=15[122]
S30=1830
Alternate Method :
n=30
a30=119
an=a+(n-1)d
a30=a+(30-1)d
119=a+29d — (1)
a30=a+(30-1)d
119=a+29d — (1)
Now,
8th term from the end of the AP will be (30-8+1)th i.e.23rd term from the starting so
a23=91
an=a+(n-1)d
a23=a+(23-1)d
91=a+22d — (2)
a23=a+(23-1)d
91=a+22d — (2)
Solving equation (1) and (2)
119=a+29d
91=a+22d
- - -
-----------------
28=0-7d
-----------------
28=7d
28/7=d
4=d
d=4
-----------------
28=0-7d
-----------------
28=7d
28/7=d
4=d
d=4
putting in equation (2)
91=a+22(4)
91=a+88
91-88=a
3=a
91=a+22(4)
91=a+88
91-88=a
3=a
a=3
Now, Sum of all the 30 terms
Sn=(n/2)[a+an]
S30=(30/2)[3+119]
S30=15[122]
S30=1830
S30=(30/2)[3+119]
S30=15[122]
S30=1830