Doubt by Angel
Solution :
f(x)=4x²-8kx+8x-9
f(x)=4x²-8(k-1)x-9
Here
f(x)=4x²-8(k-1)x-9
Here
a=4
b=-8(k-1)
c=-9
b=-8(k-1)
c=-9
Let
α=α
β=-α
β=-α
Sum of zeroes
α+β=-b/a
α+(-α)=-[-8(k-1)]/4
0=8(k-1)/4
0=2(k-1)
0/2=k-1
α+β=-b/a
α+(-α)=-[-8(k-1)]/4
0=8(k-1)/4
0=2(k-1)
0/2=k-1
0=k-1
1=k
k=1 — (1)
=kx²+3kx+2
=(1)x²+3(1)x+2 [From equation (1)]
=x²+3x+2
=x²+(2+1)x+2
=x²+2x+x+2
=x(x+2)+1(x+2)
=(x+1)(x+2)
1=k
k=1 — (1)
=kx²+3kx+2
=(1)x²+3(1)x+2 [From equation (1)]
=x²+3x+2
=x²+(2+1)x+2
=x²+2x+x+2
=x(x+2)+1(x+2)
=(x+1)(x+2)
x+1=0
x=-1
x+2=0
x=-2
Hence, required zeroes of kx²+3kx+2 are -1 and -2.
x=-1
x+2=0
x=-2
Hence, required zeroes of kx²+3kx+2 are -1 and -2.