Problem : Solve for x : x2 + 5x - (a2+a-6) = 0
Doubt by Muskan
Solution :
First of all lets factorise a2+a-6
= a2 + a - 6
= a2 + (3-2)a - 6
= a2 +3a - 2a - 6
= a(a+3) - 2(a+3)
= (a-2)(a+3)
Now
x2 + 5x - (a2+a-6) = 0x2 + 5x - (a+3)(a-2) = 0
x2 + [(a+3)-(a-2)]x -(a+3)(a-2) = 0
x2 + (a+3)x - (a-2)x -(a+3)(a-2) = 0
x [x + (a+3)] -(a-2)[x + (a+3)] = 0
[x + (a+3)] [x - (a-2)] = 0
x + (a+3) = 0
x = -(a+3)
OR
x - (a-2) = 0
x = (a-2)
∴ x = -(a+3), (a-2)
Doubt by Muskan
Solution :
First of all lets factorise a2+a-6
= a2 + a - 6
= a2 + (3-2)a - 6
= a2 +3a - 2a - 6
= a(a+3) - 2(a+3)
= (a-2)(a+3)
Now
x2 + 5x - (a2+a-6) = 0x2 + 5x - (a+3)(a-2) = 0
x2 + [(a+3)-(a-2)]x -(a+3)(a-2) = 0
x2 + (a+3)x - (a-2)x -(a+3)(a-2) = 0
x [x + (a+3)] -(a-2)[x + (a+3)] = 0
[x + (a+3)] [x - (a-2)] = 0
x + (a+3) = 0
x = -(a+3)
OR
x - (a-2) = 0
x = (a-2)
∴ x = -(a+3), (a-2)