Pages

In the given figure, ∠ACB=∠CDA, AC=8cm, AD=3cm . . .

Question : In the given figure, ∠ACB=∠CDA, AC=8cm, AD=3cm, then BD is 
a) 22/3 cm
b) 26/3 cm
c) 55/3 cm
d) 64/3 cm




Doubt by Vanshika

Solution :

∠ACB=∠CDA (Given)
⇒ ∠ACB=∠ADC
AC=8cm
AD=3cm
BD=?
In ΔACB and ΔADC
∠A=∠A (Common)
∠ACB=∠ADC (Given)
ΔACB~ΔADC (By AA Similarity Criteria)
AC/AD = AB/AC (By corresponding parts of similar triangle)

8/3 = AB/8
AB = 16/3 cm 

From the figure 
BD=AB-AD
BD=64/3-3
BD=(64-9)/3
BD=55/3 cm 

Hence, c) is the correct option.