Pages

If tanalpha + cotalpha = 2, then tan20 alpha + cot20 alpha . . .

Question : If tanα + cotα = 2, then tan20 α + cot20α =

a) 0
b) 2
c) 20
d) 220

Doubt by Nimit

Solution :

tanα + cotα = 2
tanα + (1/tanα)= 2  
[tan2α +1]/tanα =2
tan2α +1=2tanα
tan2α - 2tanα+1=0

Let tanα = x
x2-2x+1=0
x2-2×x×1+1=0
(x-1)2=0
x-1=√0
x-1=0
x=1

tanα = 1
tanα = tan45°
α=45°

Now,
= tan20 α + cot20α
= tan20 45°  + cot2045° 
= (tan 45°)20 + (cot 45°)20
= (1)20 + (1)20
= 1 + 1
= 2 

Hence, b) is the correct option.