Question : Find the missing frequency f1,f2 and f3 in frequency distribution, when it is given that f2:f3=4:3 and mean is 50.
Class Interval | Frequency |
0-20 | 17 |
20-40 | f1 |
40-60 | f2 |
60-80 | f3 |
80-100 | 19 |
Total | 120 |
Doubt by Gauri
Solution :
Mean (x̄) = 50 (Given)
f2:f3=4:3 (Given)
Let f1=x
Let f2=4y and f3=3y
Let f1=x
Let f2=4y and f3=3y
Class Interval (CI) | Frequency (fi) | Class Marks (xi) | fixi |
0-20 | 17 | 10 | 170 |
20-40 | x | 30 | 30x |
40-60 | 4y | 50 | 200y |
60-80 | 3y | 70 | 210y |
80-100 | 19 | 90 | 1710 |
Total | 120 | 30x+410y+1880 |
Now,
17+x+4y+3y+19=120
x+7y+36=120
17+x+4y+3y+19=120
x+7y+36=120
x+7y=120-36
x+7y=84 — (1)
By Direct Method
Mean (x̄)= Σfixi/Σfi
50 = (30x+410y+1880)/120
50×120 = 30x+410y+1880
x+7y=84 — (1)
By Direct Method
Mean (x̄)= Σfixi/Σfi
50 = (30x+410y+1880)/120
50×120 = 30x+410y+1880
6000 = 30x+410y+1880
6000-1880 = 30x+410y
4120 = 30x+410y
4120 =10(3x+41y)
412 = 3x+41y
3x+41y=412 — (2)
Solving equation (1) and (2)
6000-1880 = 30x+410y
4120 = 30x+410y
4120 =10(3x+41y)
412 = 3x+41y
3x+41y=412 — (2)
Solving equation (1) and (2)
(x+7y=84)×3
3x+41y=412
3x+41y=412
3x + 21y = 252
3x + 41y = 412
- - -
____________
0 -20y = -160
____________
20y=160
y=160/20
y=8
putting in eq (1)
3x + 41y = 412
- - -
____________
0 -20y = -160
____________
20y=160
y=160/20
y=8
putting in eq (1)
x+7(8)=84
x+56=84
x=84-56
x=28
x+56=84
x=84-56
x=28
f1=x=28
f2=4y=4(8) = 32
f3=3y=3(8) = 24
f3=3y=3(8) = 24
Hence, f1=28, f2=32, f3=24