Doubt by Vanshika
OR
Show that if the roots of the following quadratic equation in x (a²+b²)x²-2(ac+bd)x+(c²+d²)=0 are equal then ad=bc.
Show that if the roots of the following quadratic equation in x (a²+b²)x²-2(ac+bd)x+(c²+d²)=0 are equal then ad=bc.
Doubt by Zoha
Solution :
(a²+b²)x²-2(ac+bd)x+c²+d²=0
Here
A=a²+b²
A=a²+b²
B=-2(ac+bd)
C=c²+d²
D=B²-4AC
D=0 (Roots are equal)
0=B²-4AC
0=[-2(ac+bd)]²-4(a²+b²)(c²+d²)
0=4(ac+bd)²-4(a²+b²)(c²+d²)
0=4[(ac+bd)²-(a²+b²)(c²+d²)]
0/4=(ac+bd)²-(a²+b²)(c²+d²)
0=a²c²+b²d²+2(ac)(bd)-[a²(c²+d²)+b²(c²+d²)]
0=a²c²+b²d²+2(ac)(bd)-[a²c²+a²d²+b²c²+b²d²]
0=a²c²+b²d²+2(ac)(bd)-a²c²-a²d²-b²c²-b²d²
D=0 (Roots are equal)
0=B²-4AC
0=[-2(ac+bd)]²-4(a²+b²)(c²+d²)
0=4(ac+bd)²-4(a²+b²)(c²+d²)
0=4[(ac+bd)²-(a²+b²)(c²+d²)]
0/4=(ac+bd)²-(a²+b²)(c²+d²)
0=a²c²+b²d²+2(ac)(bd)-[a²(c²+d²)+b²(c²+d²)]
0=a²c²+b²d²+2(ac)(bd)-[a²c²+a²d²+b²c²+b²d²]
0=a²c²+b²d²+2(ac)(bd)-a²c²-a²d²-b²c²-b²d²
0=2(ac)(bd)-a²d²-b²c²
0=-a²d²-b²c²+2(ac)(bd)
0=-[a²d²+b²c²-2(ac)(bd)]
0=[ad-bc]²
0=-a²d²-b²c²+2(ac)(bd)
0=-[a²d²+b²c²-2(ac)(bd)]
0=[ad-bc]²
[∵x²+y²-2xy=(x-y)²]
±√0=ad-bc
0=ad-bc
-ad=-bc
ad=bc
a/b=c/d
±√0=ad-bc
0=ad-bc
-ad=-bc
ad=bc
a/b=c/d
Hence proved.