Doubt by CBSE
Solution :
By Factorisation Method
x²-2ax+(a²-b²)=0
x²-[(a+b)+(a-b)]x+(a²-b²)=0
x²-(a+b)x-(a-b)x+(a²-b²)=0
x[x-(a+b)]-(a-b)[x-(a+b)]=0
[x-(a+b)][x-(a-b)]=0
[x-(a+b)] = 0 & [x-(a-b)] = 0
x=(a+b) & x=(a-b)
x²-(a+b)x-(a-b)x+(a²-b²)=0
x[x-(a+b)]-(a-b)[x-(a+b)]=0
[x-(a+b)][x-(a-b)]=0
[x-(a+b)] = 0 & [x-(a-b)] = 0
x=(a+b) & x=(a-b)
By Quadratic Formula
x²-2ax+(a²-b²)=0
A=1
x²-2ax+(a²-b²)=0
A=1
B=-2a
C=(a²-b²)
C=(a²-b²)
D=B²-4AC
D=(-2a)²-4(1)(a²-b²)
D=4a²-4(a²-b²)
D=4a²-4a²+4b²
D=4b²
∵ D>0
∴ Roots are real and distinct.
D=(-2a)²-4(1)(a²-b²)
D=4a²-4(a²-b²)
D=4a²-4a²+4b²
D=4b²
∵ D>0
∴ Roots are real and distinct.
Hence, x=(a+b) & x=(a-b)