Question : Prove that cot4θ-1=cosec4θ-2cosec2θ
Doubt by Utkrisht
Solution :
cot4θ-1=cosec4θ-2cosec2θ
RHS
=cosec4θ-2cpsec2θ
=cosec2θ(cosec2θ-2)
=cosec2θ(cosec2θ-2)
=(1+cot2θ)(1+cot2θ-2) [∵cosec²θ=1+cot²θ]
=1+cot2θ(cot2θ-1)
=(1+cot2θ)[-(1-cot2θ)]
=-(1+cot2θ)(1-cot2θ)
=-([1]²-[cot²θ]²) [∵(a+b)(a-b)=a²-b²]
=-(1-cot4θ)
=-1+cot4θ
=cot4θ-1
=1+cot2θ(cot2θ-1)
=(1+cot2θ)[-(1-cot2θ)]
=-(1+cot2θ)(1-cot2θ)
=-([1]²-[cot²θ]²) [∵(a+b)(a-b)=a²-b²]
=-(1-cot4θ)
=-1+cot4θ
=cot4θ-1
= LHS
LHS=RHS
Hence Proved.