Doubt by Noor
Solution :
Let length of the rectangle be x units
and breadth of the rectangle be y units
Area of rectangle = l×b
= xy square units.
= xy square units.
ATQ
(x-5)×(y+3)=(xy-9)
x(y+3)-5(y+3)=xy-9
xy+3x-5y-15=xy-9
x(y+3)-5(y+3)=xy-9
xy+3x-5y-15=xy-9
3x-5y-15=-9
3x-5y=-9+15
3x-5y=6 — (1)
3x-5y=6 — (1)
Also
(x+3)×(y+2)=(xy+67)
x(y+2)+3(y+2)=xy+67
xy+2x+3y+6=xy+67
2x+3y+6=67
2x+3y=67-6
2x+3y=61 — (2)
x(y+2)+3(y+2)=xy+67
xy+2x+3y+6=xy+67
2x+3y+6=67
2x+3y=67-6
2x+3y=61 — (2)
Solving equations (1) and (2)
3x-5y=6
2x+3y=61
[3x-5y=6 ]×2
[2x+3y=61]×3
6x-10y=12
6x+9y=183
- - -
-----------------
0x-19y=-171
-----------------
-19y=-128
19y=128
y=128/19
y=9
- - -
-----------------
0x-19y=-171
-----------------
-19y=-128
19y=128
y=128/19
y=9
putting y=9 in equation (1)
3x-5(9)=6
3x-45=6
3x=6+45
3x=51
x=51/3
x=17
Hence, length of rectangle is 17 units and breadth of rectangle is 9 units.
3x-5(9)=6
3x-45=6
3x=6+45
3x=51
x=51/3
x=17
Hence, length of rectangle is 17 units and breadth of rectangle is 9 units.