Question : Prove that sinA(1+tanA)+cosA(1+cotA) = secA+cosecA
Doubt by Afifa
Solution : OR
sinA(1+tanA)+cosA(1+cotA) = secA+cosecA
sinA(1+tanA)+cosA(1+cotA) = secA+cosecA
sinA(1+tanA)+cosA(1+cotA)
=sinA(1+sinA/cosA) + cosA(1+cosA/sinA)
=sinA[(cosA+sinA)]/cosA+cosA[(sinA+cosA)]/sinA
=sinA[(sinA+cosA)]/cosA+cosA[(sinA+cosA)]/sinA
=sinA+cosA[(sin²A+cos²A)/sinAcosA]
=sinA+cosA[1/sinAcosA]
[∵sin²A+cos²A=1]
=sinA/sinAcosA + cosA/sinAcosA
= 1/cosA + 1/sinA
[∵1/cosA=secA and 1/sinA=cosecA]
= RHS
Hence Proved.