Pages

If a=2^2×3^x, b=2^2×3×5, c=2^2×3×7 and . . .

Question : If a=2²×3x, b=2²×3×5, c=2²×3×7 and LCM (a, b, c) = 3780, then x is equal to

(A) 1
(B) 2
(C) 3
(D) 0


CBSE Sample Question Paper 2025-2026

Solution : 

a=2²×3x

b=2²×3×5

c=2²×3×7

LCM (a,b,c) = 2²×3x×5×7 — (1) 

LCM (a,b,c) = 3780 (Given)
LCM (a,b,c) = 2²×3³×5×7 — (2) 

From (1) and (2) 
2²×3x×5×7=2²×3³×5×7
3x=33

Clearly x=3

So, (C) 3, would be the correct option.



 Similar Question : 

If a=513×7, b=3×525×76, c=5n×74 and LCM (a,b,c) = 3×531×76, then n=?
(a) 31
(b) 25
(c) 13
(d) 34



If a=5^13×7, b=3×5^25×7^6, c=5^n×7^4 . . .

Question : If a=513×7, b=3×525×76, c=5n×74 and LCM (a,b,c) = 3×531×76, then n=?

(a) 31
(b) 25
(c) 13
(d) 34

Doubt by Muskan 

Solution : 

a=513×7
b=3×525×76
c=5n×74

LCM(a,b,c) = 
3×5n×76 — (1)
LCM (a,b,c) = 
3×531×76 — (2) [Given]

From (1) and (2)

3×5n×76 = 3×531×76
5n531
n=31

Hence, (a) 31, would be the correct option. 


 Similar Question : 

If a=2²×3x, b=2²×3×5, c=2²×3×7 and LCM (a, b, c) = 3780, then x is equal to

(A) 1
(B) 2
(C) 3
(D) 0


Prove that sinA(1+tanA)+cosA(1+cotA) . . .

Question : Prove that sinA(1+tanA)+cosA(1+cotA) = secA+cosecA

Doubt by Afifa

Solution : OR

sinA(1+tanA)+cosA(1+cotA) = secA+cosecA





OR

sinA(1+tanA)+cosA(1+cotA) = secA+cosecA

LHS
sinA(1+tanA)+cosA(1+cotA)
=sinA(1+sinA/cosA) + cosA(1+cosA/sinA)
[∵tanA=sinA/cosA, cotA=cosA/sinA]
=sinA[(cosA+sinA)]/cosA+cosA[(sinA+cosA)]/sinA
=sinA[(sinA+cosA)]/cosA+cosA[(sinA+cosA)]/sinA
=sinA+cosA[sinA/cosA+cosA/sinA]
=sinA+cosA[(sin²A+cos²A)/sinAcosA]
=sinA+cosA[1/
sinAcosA]
[∵
sin²A+cos²A=1]
=(sinA+cosA)/sinAcosA
=sinA/
sinAcosA + cosA/sinAcosA
= 1/cosA + 1/sinA
= secA+cosecA
[∵
1/cosA=secA and 1/sinA=cosecA]
= RHS

LHS=RHS 
Hence Proved.


In ΔABC, ∠ACB=90° and DCEF is a square . . .

Question : In ΔABC, ∠ACB=90° and DCEF is a square, as shown in figure. Prove that DE²=AD×BF




Doubt by Afifa

Solution : 

DCEF is a square. 
DE=EF=FC=CD (All sides of square are equal)

In ΔACB and ΔADE
∠A=∠A (Common)
ACB=∠ADE (Each 90°)
ΔACB~ΔADE (By AA Similarity Criteria) — (1) 

In ΔACB and ΔEFB
∠B=∠B (Common)
ACB=∠EFB (Each 90°)
ΔACB~ΔEFB (By AA Similarity Criteria) — (2) 

From equation (1) & (2) 
ΔADE~ΔEFB 

AD/EF=ED/BF (By CPCT)
AD×BF=EF×ED 
AD×BF=EF×DE
AD×BF=DE×DE [∵EF=DE]
AD×BF=DE²
DE²=AD×BF

Hence Proved. 

If the ratio of the sum of the first n terms of two A.P.s is (7n+1) . . .

Question : If the ratio of the sum of the first n terms of two A.P.s is (7n+1):(4n+27), then find the ratio of their 9th terms.


Doubt by Shaurya

Solution : 

Let us consider two AP's having first term and common difference as a and a' and d and d' respectively. 

Sn:Sn'=(7n+1):(4n+27)
n/2[2a+(n-1)d] : 
n/2[2a'+(n-1)d']=(7n+1):(4n+27)
[2a+(n-1)d]:[2a'+(n-1)d']=(7n+1):(4n+27)
2[a+{(n-1)/2}d]:2[a'+{(n-1)/2}d']=(7n+1):(4n+27)
[a+{(n-1)/2}d]:[a'+{(n-1)/2}d']=(7n+1):(4n+27) — (1) 

Now in order to find the ratio of 9th term
{(n-1)/2} should be equal to 8
{(n-1)/2}=8
n-1=16
n=16+1
n=17

Putting n=17 in equation (1) 

a+8d:a'+8d=[7(17)+1]:[4(17)+27]
a+(9-1)d : a'+(9-1)d'=[119+1] : [68+27]
a9:a'9=120:95
a9:a'9=24:19

Hence, the ratio of 9th term is 24:19


Similar Question
If the ratio of the sum of first n terms of two AP's is (7n+1):(4n+27), find the ratio of their mth terms.

Divide 32 into four parts which are in A.P. such that the product

Question : Divide 32 into four parts which are in A.P. such that the product of extremes is to the product of means is 7:15.

Doubt by Shaurya 

Solution : 

Let the four parts which are in AP are
a1=a-3d
a2=a-d
a3=a+d
a4=a+3d

ATQ
a1+a2+a3+a4=32
a-3d+a-d+a+d+a+3d=32
4a=32
a=32/4
a=8 — (1)

(a1×a4):(a2×a3) = 7:15
(a1×a4)/(a2×a3) = 7/15
(a-3d)(a+3d)/(a-d)(a+d)=7/15
(a²-9d²)/(a²-d²)=7/15
(a²-9d²)/(a²-d²)=7/15
15(a²-9d²)/=7×(a²-d²)
15a²-135d²=7a²-7d²
15a²-7a²=135d²-7d²
8a²=128d²
8(8)²/128=d² [From equation (1)]
8×64/128=d²
8/2=d²
4=d²
d²=4
d=±√4
d=±2

When d=+2, a=8
a1=a-3d = 8-3(2) = 8-6 = 2
a2=a-d = 8-2 = 6
a3=a+d = 8+2 = 10
a4=a+3d = 8+3(2) = 8+6 = 14

When d=-2, a=8
a1=a-3d = 8-3(-2) = 8+6 = 14
a2=a-d = 8-(-2) = 8+2 = 10
a3=a+d = 8+(-2) = 8-2 = 6
a4=a+3d = 8+3(-2) = 8-6 = 2

Hence, the required four parts are 2, 6, 10, 14 or 14, 10, 6, 2

Similar Question
Divide 56 in four parts in AP such that the ratio of the product of their extremes to the product of means is 5:6.

If ΔABC~ΔPQR in which AB=6cm . . .

Question : If ΔABC~ΔPQR in which AB=6cm, BC=4cm, AC=8cm and PR=6 cm, then find the length of (PQ+QR).

Doubt by Shaurya and Prateek

Solution :
AB=6cm (Given) BC=4cm (Given) AC=8cm (Given) PR=6 cm (Given)
ΔABC~ΔPQR (Given) AB/PQ=BC/QR=AC/PR (Corresponding sides of similar triangle are proportional) 6/PQ=4/QR=8/6 6/PQ=4/QR=4/3 Now, 6/PQ=4/3 4PQ=18 PQ=18/4 PQ=4.5 cm

Also, 4/QR=4/3 QR=3 cm PQ+QR =4.5+3 =7.5 cm
∴PQ+QR=7.5 cm

Assertion (A): If cosA+cos2A=1, then sin2A+sin4A . . .

Question : Assertion (A): If cosA+cos²A=1, then sin²A+sin⁴A=1
Reason (R): sin²A+cos²A=1

Choose the correct option:
(A)Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A)
(B)Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A)
(C)Assertion (A) is true but reason (R) is false.
(D)Assertion (A) is false but reason (R) is true.

CBSE Sample Question Paper 2026

Solution : 

cosA+cos²A=1 (Given) —(1) 
cosA=1-cos²A
cosA=sin²A — (2) 
[ ∵ sin²
θ+cos²θ=1]

Now 
sin²A+sin⁴A
=sin²A+(sin²A)²
=cosA+(cosA)²
=cosA+cos²A
=1 [From equation (1)]

Hence, sin²A+sin⁴A=1

We have proved this by using the identity sin²A+cos²A=1, which is given in assertion.

So, (A)Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A), will be the correct option.

If 2sin5x=√3, 0°<=x<=90°, then x is equal to . . .

Question : If 2sin5x=√3, 0°≤x≤90°, then x is equal to 

(A) 10°
(B) 12°
(C) 20°
(D) 50°

CBSE Sample Question Paper 2026

Solution : 

2sin5x=√3
sin5x=√3/2
sin5x=sin60°
5x=60°
x=60°/5
x=12°

Hence, (B) 12°, would be the correct option. 

If secθ+tanθ=x, then secθ-tanθ will be . . .

Question : If secθ+tanθ=x, then secθ-tanθ will be

(A) x
(B) x²
(C) 2/x
(D) 1/x

CBSE Sample Question Paper 2026

Solution : 

secθ+tanθ=x
Reciprocating both side

1/(secθ+tanθ) = 1/x
sec²
θ-tan²θ/(secθ+tanθ)=1/x [∵1+tan²θ=sec²θ]
[(
secθ+tanθ)(secθ-tanθ)]/(secθ+tanθ)=1/x
[
∵a²-b²=(a+b)(a-b)]
secθ-tanθ=1/x

Hence, (D) 1/x, would be the correct option.