CBSE 2025
Solution :
Let the number of red balls = x
and the number of blue balls = y
ATQ
10% of x + 20% of y = 24
(10/100)x + (20/100)y = 24
x/10 + 2y/10 = 24
(x+2y)/10 = 24
x+2y = 240 — (1)
3x-y = 20 — (2)
Solving equation (1) and (2)
(10/100)x + (20/100)y = 24
x/10 + 2y/10 = 24
(x+2y)/10 = 24
x+2y = 240 — (1)
3x-y = 20 — (2)
Solving equation (1) and (2)
x + 2y = 240
[3x - y = 20]×2
x + 2y = 240
6x - 2y = 40
---------------------
7x + 0 = 280
---------------------
7x=280
x=280/7
x=40
7x + 0 = 280
---------------------
7x=280
x=280/7
x=40
putting in equation (2)
3(40)-y = 20
120-y=20
120-20 = y
100 = y
y = 100
Hence, number of red balls = 40 and number of blue balls = 100.
120-y=20
120-20 = y
100 = y
y = 100
Hence, number of red balls = 40 and number of blue balls = 100.